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SUMMARY

The theory of semi-similar solutions of the laminar boundary layer equa-
tions is applied to several flows in which the boundary layer approaches a
three—-dimensional separation line. The solutions obtained are used to deduce
the nature of three-dimensional separation. It is shown that in these cases
separation is of the "ordinary" type. A solution is also presented for a case
in which a vortex is embedded within the three-dimensional boundary layer.

INTRODUCTION

The determination of the aerodynamic forces and moments on many practical
bodies requires the prediction of the location of boundary layer separation on
the body. When the boundary layer is both laminar and two-dimensional this is
not a very difficult problem. The phenomenon of two-dimensional separation is
well understood and there are methods available which can be used to predict
the flow up to separation and the location of separation with reasonable accu-
racy. When the boundary layer is three-dimensional the problem of predicting
separation is considerably more difficult. In this case the usual methods of
calculation, which involve such assumptionsas similarity, small perturbations
or yawed infinite cylinders, offer little aid. Furthermore, there are still
pressing questions as to the nature of three-dimensiomnal separation.

The criterion for three—~dimensional laminar boundary layer separation is
not necessarily the same as that for two-dimensional separation (i.e., the
vanishing of the wall shear at the point of separation). In fact, both Maskell
(ref. 1) and Lighthill (ref. 2) have pointed out that there are two possible
modes of separation for the three-dimensional boundary layer. In one case the
total wall shear may vanish at separation. This type of separation has been
named by Maskell "singular" separation. In the second case the limiting stream-
lines, or streamlines closest to the solid wall, run close together and become
tangent to the line of separation at separation. This type .of separation has
been named by Maskell "ordinary" separation,

The number of three-dimensional boundary layer calculations which have
been carried out up to the vicinity of separation is quite limited. This is
true, in part at least, because of the added mathematical difficulty arising
from the addition of another independent variable (the third spatial coordinate)
and the corresponding dependent variable (the third velocity compomnent) in the
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three-dimensional problem. Another difficulty which has served to limit solu-
tions in the vicinity of separation is the fact that flow reversal of one ve-
locity component parallel to the wall often occurs near separation.

The present work presents an investigation of several three-dimensional
boundary layer flows, which approach separation, with the objective of studying,
in some detail, the nature of the flow in the vicinity of separation. The
method employed in the present analysis is that of semi-similar solutions.
Mathematically the method of semi-similar solutions is a technique by which the
three independent variables are reduced to two by an appropriate scaling. In
cases where separation occurs, the technique has a more important physical in-
terpretation. It may be viewed as a scaling of the two surface coordinates in
such a way that separation occurs at a constant value of the new scaled surface
coordinate (although the value of the new scaled coordinate corresponding to
separation is not known a priori). This property is extremely helpful in de-
termining, from the solutions, the physical characteristics of separation.

Solutions are presented for two cases which lead to three-dimensional se-
paration of the ordinary type. In one of these cases one of the velocity com—
ponents parallel to the wall becomes negative prior to separation. Finally, a
case 1s presented in which a vortex is embedded within the three-dimensional

boundary layer.

SYMBOLS
A, B, C, D, E, H, I, J coefficients of § in the reduced momentum equation
(eq. (7))
F(E,m, GE,M) dimensionless stream functions
g(x,y) scaling function for the z-coordinate
2 characteristic length for the flow
P pressure
U characteristic velocity for the flow
U, Vv, W the x, y and z components of velocity, respectively
X, ¥ coordinate directions on the body surface (fig. 1)
z coordinate direction normal to body surface
n scaled z-coordinate
v kinematic viscosity
g scaled x and y coordinate
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P density

T wall shear
Subscripts
§ conditions at the "upper" edge of the boundary layer
w condition at the body surface (wall)
ANALYSIS

The boundary layer equations for steady, incompressible motion in three-
dimensions over a surface with large radii of curvature are:

Bu ov , ow _
+ Sy + Fye 0 1
du,  du, du__ 13, ?3u
ov ov ov 15 Bzv
u §§-+ v 5§-+ WA= - B-ay + v 3;5 (3)

The boundary conditions for this set of equations are:
u(x,y,0) = v(x,y,0) = w(x,y,0) =0

lim u(x,y,z) = ug(x,y) lim v(x,y,2) = vs(x,y)

7,0 70

Here x and y are orthogonal Cartesian coordinates tangent to the body surface
and z is the coordinate normal to this surface (Fig. 1). As noted earlier we
wish to scale the physical coordinates x, y, and z into a new set of two scaled
coordinates. The appropriate scaling is: n = z/g(x,y)VV, & = £(x,y), where
g(x,y) and £(x,y) are at this point unknown functions. In addition, we define
two dimensionless stream functions F(&,n) and G(E,n) constructed so that the
continuity equation is identically satisfied. The velocity components written
in terms of these functions become:

u=u o v=v %6
§ 9an § 3n %)
ou.g v.g
=% JE OF _ g _ OF 8 9E 3G 3g _ 3G
== N g Frug e g U 5 oy T 5y ©F VsB 3y 5 ~ Vs oy 1 Bn

It is easily shown, by direct substitution, that this choice satisfies the
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continuity equation. Now if the velocity components given by equations (4) and
their derivatives are introduced into the x and y momentum equations (2) and (3),
one obtains the following pair of partial differential equations in the two

variables n and &:

F'""+ A+B)FF'"+ (C+D) GF'" + A1 - F'z) +

E(L - G'F") +H[F" g—g- P %} + I[F" g—g- G g}&’;—'] =0 (5

"""+ (C+D)GG""+ (A+B)FG'"+CA -~ G'2) +

3G oG’ oF oG
- T ry 95 Ay vy 98 o =
J(1 - F'G") + I[G 5% G 5E ] + H[G 5E F 5E ] 0 (6)
In the transformed coordinate system the boundary conditions become:
F(£,0) = F'(£,0) = G(§,0) = G"(§,0) =0 lim F'(g,n) = 1lim G'(E,n) = 1

n—)oo n>o°

Here the primes denote differentiation with respect to N and the coefficients
A, B, C, D, E, H, I, J are functions of x and y given by:

ou . * 2 oV % 2
2778 — dg* _ .2 778 _ ag*
A=g% % B = ug* oz C =8 =55 D = ve* 5=
% du . * u* v *®
2 Vs %Us 2 3L L2 3E _ 2% °Ys
Bogh uF ayx TTE Wi TT RN Vet g LA
7

In equations (7), we have normalized Uss Vs 85 X and v by introducing the di-
mensionless variables:

u v
) S /U X

= = % = -2 = -~ =X - L

* U v U g% = & 2 x* 2 y* 2

s 8
If semi-similar solutions are to exist, the coefficients A, B, C, D, E, H, I,
and J must be functions of & alone. There are four relations between these
eight coefficients, constructed using the fact that ug*, vg*, g* and £ must be
continuous functions of x* and y* and thus, the second derivatives of each of
these functions with respect to x* and y* must be independent of the order of
differentiation. An additional relation between ug* and vg* is obtained if the
component of vorticity normal to the surface vanishes outside the boundary
layer. These auxillary equations together with a discussion of the method of
solving the total problem is presented in reference 3. Once the eight coeffi-
cients in equations (5) and (6) are defined for a given problem, the solution

of equations (5) and (6) is straight forward using an implicit finite difference
technique similar to that of Blottner (ref. 4). 1In what follows we will be
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interested in the angle of the streamlines relative to the x axis. In parti-
cular we will be interested in the two extremes of this angle, evaluated in
the external flow and at the wall and given respectively by:

v . * v ¥
S . § G''(&,0
tan 86 = Gg; tan Bw = 113 §'= uG* Fuvgé 0%
n> >

In addition, we will consider the total wall shear, or more specifically, the
normalized form of the total shear given respectively by:

T.= U {jL Vuz + vz} _
oz z =

w

.o T, gV _ F''(£,0) + tan B, tan B G''(£,0)

" uu
S Y1l + tan2 Bw

Finally, we will wish to consider the effects of the pressure gradient in the x
and y directions given respectively by:

2 2
L% e ) - B LB e - 30
pU2 0% ug pUz dy ug

SOLUTIONS FOR TWO FLOWS LEADING TO SEPARATION

In the present analysis we will assume that H(E) = £ and that A(E) +
2B(E) = 1. These assumptions are made to simplify the analysis and because
they correspond to the scaling usually used in the analysis of two-dimensional
non-similar boundary layers. In addition, consideration will be limited to
that family of flows in which the external velocity components may be written
as explicit functions of £. As a result of these assumptions one obtains the
results g*2 ug = x* and £ = x*/(1 - ay*). Specifically we will consider the
velocity distributions:

¥ o p _ g2 o X* gpy_ Xk
ug =t -t 1 - ay* {1 1 - ay*}
V*=l+———g}f——{1—i'—x—*-—-}
- *
§ (1 - ay*)z 3 (1 - ay¥®)

It may easily be shown that these velocity distributions correspond to an irro-
tational outer flow (i.e. the vertical component of vorticity vanishes). Clear-
ly the nature of the external flow field depends on the sign of the parameter a.
Solutions will be presented for typical cases in which o is negative or positive.

1413



With these extermal velocity distributions given, all the coefficients A(f),
B(E), C(&), D(&), E(E), H(E), I(&) and J(£), may be written explicitly in terms
of £. Equations (5) and (6) then form a pair of coupled, third order, partial
differential equations which are similar in form to the transformed, two-
dimensional, non-similar boundary layer equation and may be solved, as mention-
ed earlier, using an implicit finite difference technique.

We consider first the case in which o is negative. Solutions for this
family of flows have been obtained for several values of a. The results for
o = -0.5 are typical and are presented in Figure 2. In this particular case the
pressure gradient in the x direction is negative for 0 £ £ < 0.5, positive for
0.5 < £ < 0.51 and negative for £ > 0.51 while the pressure gradient in the y
direction is positive for 0 £ £ < 0.5, negative for 0.5 < £ < 0.51 and positive
for £ > 0.51.

In this case, as in all others presented herein, the integration of equa-
tions (5) and (6) starts at & = 0, where similar solutions are obtained, and
proceeds in the & direction with an iteration on the velocity profile at each &
station. At some downstream station the number of iterations required to ob-
tain convergence starts to grow with each succeeding station until, at one sta-
tion, convergence cannot be obtained in a reasonable number of iterations.

This behavior is taken, by analogy with finite difference calculation of the
two~dimensional boundary layer, as an indication of approaching a point of sin-
gular behavior, in the boundary layer equations, associated with separation.
With o = -0.50 a solution is obtained at 0.510 with convergence at each point

in the velocity profile in 10 iterations. At & = 0.511 convergence cannot be
obtained in 120 iterations. Separation is assumed to occur, then, in the vicin-

ity of § = 0.511.

Figure 2 presents the results obtained with o = -0.50 for the angle of the
streamlines in the free stream, Bg, the angle of the limiting streamlines, B ,
and the normalized normal wall shear t*. The normalized wall shear is very
large near £ = 0 (in the limit as § = 0, T% - « because of the normalization)
but decreases with increasing £. As & approaches 0.511, T¥ does not approach
zero, in fact, at § = 0.510 T = 0.878. Clearly then, separation in this case
is not a "singular" type separation as defined by Maskell. Now if separation
occurs at a value of & denoted by Eseps then the equation for the separation
line is given by a rearrangement of the definition of &, i.e.

vk = 1 (1 - _X_S‘a_PJ (8)
sep a 3

and the slope of the separation line is:

_ _ 1
Bsep = arc tan [ agsepJ 9

Thus, if ordinary separation occurs, the angle of the limiting streamlines at

the wall, By, should approach the angle of the separation line Bg.,, as separa-
tion is approached. 1In the present case with gsep taken to be 0.511, the value
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of By at £ = 0.510 is 1.3184 which is very close to the value Bgep of 1.3206.
This value of Bgep 1s also noted on Figure 2. Clearly By approaches Bsep as
separation is approached verifying the concept of "ordinary' separation.

Next we consider a case in which o is positive. Again solutions for this
family of flows have been obtained for several values of o; the results for
= 0.5 are typical and are presented in Figure 3. 1In this case both the pres-
sure gradient in the x direction and the pressure gradient in the y direction
are negative for 0 £ £ < 0.5 and positive for £ > 0.5. The magnitude of the
pressure gradient in the y direction is considerably smaller than the magnitude
of the pressure gradient In the x direction.

With o = 0.5 a solution is obtained at £ = 0.603 in 39 iterations, at & =
0.604 in 43 iterations and at £ = 0.605 in 68 iterations. Convergence cannot
be obtained at £ = 0.606 in 120 iterations. Separation is assumed to occur,
then, in the vicinity of £ = 0.606.

In this case the total wall shear T§ decreases (from an infinite value at
£ = 0) with increasing £ until it passes through zero at approximately £ = 0.596.
With further increase in £, T becomes more negative and at § = 0.605 has the
value T¥ = -0.0332. The total wall shear is negative because the x component
of velocity is reversed beyond £ = 0.596. The x component of velocity is re-
versed because of the strong positive pressure gradient (adverse pressure gradi-
ent) which acts beyond & = 0.5. It should be noted that in this work, as in
reference 3, solutions are obtained in regions where one or the other velocity
components are reversed without any hint of an instability. This point will be
discussed later.

The wall shear, although small, is not zero at separation. Thus, this
case does not represent a "singular" type separation. As noted previously, if
separation in this case is "ordinary'" the angle of the limiting streamlines at
the wall should approach the angle of the separation line as separation is ap-
proached. That this is the case, is shown in Figure 3. Both the angle of the
limiting streamlines, By, and the angle of the streamlines in the freestream,
Bs, are /2 at £ = 0. As £ increases Bs decreases, fairly rapidly at first and
then more slowly. The angle B, decreases rapidly initially and then increases
rapidly so that it approaches the value Bg ., (noted on Figure 3) as separation
is approached. Thus, the separation involved here is an "ordinary" separation.

INTEGRATION INTO REGIONS OF REVERSE FLOW

In the example just considered the x component of velocity mear the wall
changed directions near separation. Thus, it was necessary to integrate the
boundary layer equations into a region of reverse flow to obtain the solution.
Until quite recently the "conventional wisdom" was that integration of the
boundary layer equations into regions of reverse flow lead to numerical insta-
bility problems since, in regions of reverse flow, the problem was ill posed.
In the present case integration into regions of reverse flow apparently poses
no problem. Since the next solution to be presented involves rather extensive
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regions of reverse flow, it 1s necessary to determine under what circumstances
integration into regions of reverse flow is permissible.

To investigate this problem we note that equations (5) and (6) may be re-
written in the form:

oF'

ey 1Y U = or "

F + Oq1 F'' + Ooq F' + Ogy = Oy 3E (10)

G'"'"+4a,. F'"+0,,G" +o, ., =0 36T (11)
21 22 32 42 9%

Here again primes denote differentiation with respect to n. The exact form of
the a4i:'s in equations (10) and (11) may be determined by comparison with equa-
tions (5) and (6); it is only important to note that 047 = 049 = HF' + IG'. If
F' and G' are treated as independent variables, equations (10) and (11) closely
resemble the one-dimensional heat conduction equation. As in the mathematical
solution of the heat conduction equation, the problem is well posed only if the
coefficient 047 is positive. If a4 is positive, equations (10) and (11) are
parabolic and solutions are possible if appropriate boundary and initial condi-
tions are prescribed. 1If 0,1 becomes negative for any portion of the flow
field, equations (10) and (11) are parabolic equations of the mixed type and
additional information is needed in order to obtain a solution to these equa-
tions. Since 047 = 049 = HF' + IG', it is clear that this coefficient may be
positive even when one of the velocities is negative. For example, if the x
component. of velocity is negative near the wall then in this region F' < 0, but
a1 will be positive provided the product IG' is positive and greater than the
absolute value of the product HF'. For this reason, solutions to equations (5)
and (6) may be obtained without any numerical instability problems even when
one of the velocity components is reversed.

AN EMBEDDED VORTEX

We now consider a third case in which the solution represents physically a
three-dimensional boundary layer with an embedded vortex. It is assumed, as
before, that A(E) + 2B(E) = 1, H(§) = £ and that the velocity components are
functions of the scaled variable & (i.e. ug = uS(E), and vg = VG(E))' These as-
sumptions lead to the relations g2 ug =x* and £ = x*/(1 - ay*). In addition
we assume 1(£) = £. This assumption yields a relation between u§ and v¥, name-
1y ug(i) = agvg. It should be noted that for this flow the component of vor-
ticity normal to the wall does not vanish outside the boundary layer. Thus,
this inviscid flow will represent some type of sheared flow (rotational flow).
Finally, the y component of velocity at the upper edge of the boundary layer is

taken to be:

vi =1 -y - 58273 + 823/9)

This form is chosen so that the normalized y component of velocity is unity at
£ = 0, has a minimum at £ = 0.5 and a maximum at & = 0.75. This leads to a
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pressure gradient in the x direction which is favorable for all £ in the range
0 £ £ £ 1 but a pressure gradient in the y direction which is positive (adverse)
for 0 £ £ < 0.5, negative (favorable) for 0.5 < £ < 0.75 and positive (adverse)
for £ > 0.75.

Results are presented in Figures 4 and 5 for the case 0 = 0.5 and for sev-
eral values of y. The variation of the limiting streamline angle, 8,, with £
is shown in Figure 4 for y = 1.0, 2.0 and 2.5. For Yy = 1.0, B, decreases with
increasing £. For y = 2.0, B, decreases to a value of approximately zero at
£ 0.3, increases beyond this point to a value of approximately 0.75 at
€ = 0.75 and then decreases slowly. For y = 2.5, B, decreases and reaches a
minimum value of -0.96 and then increases again reaching a maximum at approxi-
mately £ = 0.8. The variation of B, with § for vy = 3.0 is similar to that for
Y = 2.5 but is not shown. For Yy = 3.25, 3.5 and 4 (also not shown) ordinary
separation occurs. The velocity profiles for the v component of velocity are
shown in Figure 5. These velocity profiles are presented for the case o 0.5,
Y = 3.0. The y component of velocity is reversed between £ = 0.12 and & 0.53.
This is also the region where the angle of the limiting streamlines 1s negative.
Taken together, Figures 4 and 5 present a clear picture of a vortex embedded
deep within the three-dimensional boundary layer. For £ < 0.12 and § > 0.53
both the x and y components of velocity are positive everywhere and the flow
proceeds down stream in a normal fashion. Between £ = 0.12 and £ = 0.53 both
the x and y components of velocity are positive in the outer portion of the
boundary layer but near the wall the x component of velocity is positive while
the y component is reversed (negative). This results in a spiraling flow near
the wall or an embedded vortex.

e

From the results presented for the wall shear, it is clear that for vy < 2.0
such a vortex does not exist (there is no flow reversal near the wall). As Yy
1s increased beyond 2.0 a vortex 1s formed, a vortex which increases in size as
the pressure gradient becomes more severe (Y is increased) until the pressure
gradient becomes sufficiently severe that separation occurs.

Such a flow, with an embedded vortex, may at first appear strange. Such
embedded vorticities do, however, occur in aerodynamics. The classical example
occurs in the case of supersonic flow past a cone at moderate angle of attack.
Moore (ref. 5) was apparently the first to recognize the nature of such an em—
bedded vortex.

CONCLUDING REMARKS

The theory of semi-similar solutions has been used to investigate several
three-dimensional laminar boundary layer flows which approach a separation line.
The use of semi-similar solutions makes it possible to investigate the nature
of the boundary layer as separation is approached. When separation occurred in
the cases considered the three-dimensional separation was of the "ordinary"
type in which the limiting or "wall" streamlines run close together and approach
a tangent to the separation line. In one case considered, it is shown that as
the pressure gradient becomes more severe, a vortex is formed within the bound-
ary layer. If the pressure gradient becomes sufficiently large the boundary
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layer separates. The separation in this case is again an "ordinary" type sep-
aration.
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Figure 1l.—- Coordinate system for three-dimensional boundary layer analysis.

2.0p —5.0
.0
.0
*
B e
.0
0.4 -41.0
0 ] | | o
0 0.2 0.4 0.6
g

Figure 2.- Freestream streamline angle, limiting streamline
angle, and total wall shear for o = =0.5.
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Figure 3.-~ Freestream streamline angle, limiting
streamline angle, and total wall shear for
a = 0.5.
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